Original Article

Examination of Blood Urea, State of Reactive Oxygen Species And Antioxidants Associated With Oral Contraceptive Pills Among Female Athletes

Muhammad Zafar Iqbal Butt¹, Muhammad Jamil², Alamgir Khan³, Ausaf Chaudhary⁴, Aftab Ahmad Jan⁵, Manzoor Khan⁶, Zeliha Selamoglu⁷, Elifsena Canan Alp⁷ and Muhammad Roman Al Ala Durrani⁸

¹Department of Sports Sciences & Physical Education, University of the Punjab, Lahore, Pakistan
²Center for Physical Education, Health & Sports Sciences, University of the Sindh, Jamshoro, Pakistan
³International Islamic University, Islamabad, Pakistan
⁴Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
⁵Department of Sports Sciences Physical Education, Gomal University, Dera Ismail Khan, Pakistan
⁶Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
⁷Necmettin Erbakan University Meram, Faculty of Medicine, Department of Obstetrics and Gynecology, Selcuklu Konya, Turkey
⁸Department of Sports Sciences & Physical Education, University of Science & Technology, Bannu, Pakistan

ARTICLE INFO

Key Words:
Blood Urea, Oxidative Stress, Oral Contraceptive Pills, Females Athletes

How to Cite:

*Corresponding Author:
Muhammad Jamil
Center for Physical Education, Health and Sports Sciences University of Sindh, Jamshoro, Pakistan
meharjamil88@gmail.com

Received Date: 18October, 2022
Acceptance Date: 16thNovember, 2022
Published Date: 30thNovember, 2022

INTRODUCTION

Many females use OCP-containing hormones like estrogen and progesterone for controlling unwilling pregnancy by destroying ovulation, coagulating the cervical mucus and spoiling sperm diffusion [1, 2]. Both estrogen and progesterone are likely hormones produced naturally by the female ovary [3, 4]. Resultant of different factors, naturally, in the human body, reactive oxygen species as free radicals (ROS / RONS), which, by the transfer of their free, unpaired electron, causes oxidation [5, 6]; thus human body leads to oxidative stress. Oxidative stress is the "Imbalance between reactive oxygen species (ROS) and antioxidants in the body". Antioxidants are essential in
preventing the body from oxidative stress caused by reactive oxygen species. This imbalance leads to tissue damage [7, 8]. In oxidative reactions, organic compounds such as DNA, proteins, carbohydrates and lipids become degraded. The body contains powerful enzymatic and non-enzymatic anti-oxidants, which manage the lethal effects of oxidative stress. As reactive oxygen species generate oxidative stress, so in conditions like inflammation, carcinogenesis, ageing, radiation damage and photo biological reactive oxygen species are involved. This area of research (oxidative stress) provides new perspectives in pathophysiology, toxicology, biochemistry and pharmacology [7]. In a normal person, the level of reactive oxygen, species and antioxidants remain equal. When this balance disturbed, the level of reactive oxygen becomes increased [9, 10]. Living organisms use the oxygen to survive. As oxygen is poisonous to the body, these organisms contain antioxidants to counteract free radicals bent due to biochemical reactions and safeguard the body from the toxic effects of oxygen. Antioxidants are the constituent which foil the oxidation of organic molecules, produced in the body and also taken with food. Considering the above critical analysis of previous studies, it is clear that OCP users may be at risk of different health problems. What is the impact of OCP on the blood urea and antioxidant system? To discover this fact, the researcher intends to conduct a research study under the title “Assessment of Blood Urea and Oxidative Stress Induced by Oral Contraceptive Pills among Female Athletes.”

METH ODS

The researcher adopted the below procedures to reach specific findings and conclusions. Female athletes were taken as Participants of the study were randomly selected as participants of the study. The users of OCP were placed in the Experimental Group (EG), and the nonuser of OCP was put in (CG). A random sampling technique is used for selecting sample and thus each group was comprised of twenty-five subjects. 5ml blood was collected from all the issues. Each subject was marked with a different identification code. The ethical and review board of Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan, approved the protocol of this particular research study. The blood urea level was measured through the blood urea nitrogen (BUN) test. The balancing state of reactive oxygen species and antioxidants was measured through the Ferric Reducing Assay Protocol (FRAP Assay). Results collected through both BUN and FRAP were calculated through the statistical package for social sciences (SPSS, version 26.0) and by using analyzed by using mean, standard deviation, frequency and percentage etc., as statistical tools. Mean and Standard Deviation was calculated for quantitative variables and frequency and percentages for qualitative variables. Independent sample t test was applied to find out the significant difference of blood urea levels among both groups. p value <0.05 was considered as significant. Mean: The mean can be used to represent the typical value and therefore serves as a yardstick for all observations. It is calculated as:

\[
\text{Mean} = \frac{\text{Sum of All Data Points}}{\text{Number of Data Points}}
\]

Standard Deviation: Standard deviation measures the dispersion of a dataset relative to its mean. It is calculated as the square root of the variance. Standard deviation, in finance, is often used as a measure of the relative riskiness of an asset.

RESULTS

Table 1 represents the age-wise difference in blood urea mg/dl in both CG and EG. 15 participants were between age 20-25 years, 20 participants were between age 26-30 years and 15 participants were above the age of 31 years.

<table>
<thead>
<tr>
<th>Age-wise groups</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 -25 years</td>
<td>15</td>
</tr>
<tr>
<td>26-30 years</td>
<td>20</td>
</tr>
<tr>
<td>31 years and above</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 1: Showing the age-wise difference regarding Blood Urea mg/dl in both CG and EG

Table 2 shows the mean difference in blood urea mg/dl in CG and EG. The data indicate the same result regarding blood urea in both CG and EG. The mean and standard deviation of CG was 27.66 ±7.86. The mean and standard deviation of EG was 29.23 ±7.89. df was 82, t-score was −.822, p-value was 0.413.

<table>
<thead>
<tr>
<th>Testing Variables</th>
<th>Testing Groups</th>
<th>N</th>
<th>Mean ± SD</th>
<th>Df</th>
<th>T-score</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Urea mg/dl</td>
<td>CG</td>
<td>25</td>
<td>27.66±7.86</td>
<td>82</td>
<td>−.822</td>
<td>.413</td>
</tr>
<tr>
<td></td>
<td>EG</td>
<td>25</td>
<td>29.23±7.89</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Showing the mean difference in Blood Urea mg/dl in both CG & EG

Table 3 shows a significant difference between CG and FRAP. The mean and SD of CG were 137.95 ± .20.87, means and SD of EG was 110.54 ±.39.22, the t score was 3.23, and the P value was .002.

<table>
<thead>
<tr>
<th>Testing Variables</th>
<th>Testing Groups</th>
<th>N</th>
<th>Mean ± SD</th>
<th>Df</th>
<th>T</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRAP</td>
<td>CG</td>
<td>25</td>
<td>137.95±20.87</td>
<td>82</td>
<td>3.23</td>
<td>.002</td>
</tr>
<tr>
<td></td>
<td>EG</td>
<td>25</td>
<td>110.54±39.22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Showing the mean difference in FRAP in both CG and EG

DISCUSSION

The result of the study reveals that there is no significant
difference between age-wise three groups in Blood Urea mg/dl because (F=.298, P > 0.05). The mean scores of the three age-wise groups were the same. So, it is found that there is no effect of age on Blood Urea mg/dl. Similarly, is no significant difference between the blood Urea of both CG and EG. Blood urea such as the mean and standard deviation of CG was 27.66 ±7.86. The mean and standard deviation of EG was 29.23 ±7.89, df was 82, t-score was -.822, P-Value was .413. The same finding is drawn by [11, 12], showing that OCP has no effects on blood urea. Opposing the result of the current, the findings revealed by the study conducted [13] and demonstrated that plasma glucose and urea concentrations were unaffected by the menstrual phase or either OCP; likewise, no significant effect was found among OCP users, and thus the finding of the study reveals that OCP is safe and having side effects in term of biochemical parameters of the body [14]. The study shows a significant difference between CG and EG regarding FRAP. In line with this emerging finding, the survey conducted by [15-17] concluded that long-term use of oral contraceptives causes abnormalities in the liver. In the group of 42 women of an average age of 32 years using oral contraceptives. These women were matched with control women who were not using any contraceptives. It was indicated that there was a significant difference between cases and control movement because women taking oral contraceptives are associated with liver abnormalities, such as liver cell adenomas and hemorrhage into the tumour. Thus, it was concluded that prolonged use of oral contraceptives causes abnormalities in the liver. Finding of the study conducted by [18-20] support the present study reveals that OCP is safe and having side effects in term of biochemical parameters of the body [14]. The study shows a significant difference between CG and EG regarding FRAP. In line with this emerging finding, the survey conducted by [15-17] concluded that long-term use of oral contraceptives causes abnormalities in the liver. In the group of 42 women of an average age of 32 years using oral contraceptives. These women were matched with control women who were not using any contraceptives. It was indicated that there was a significant difference between cases and control movement because women taking oral contraceptives are associated with liver abnormalities, such as liver cell adenomas and hemorrhage into the tumour. Thus, it was concluded that prolonged use of oral contraceptives causes abnormalities in the liver. Finding of the study conducted by [18-20] support the present study reveals that OCP is safe and having side effects in term of biochemical parameters of the body [14]. The study shows a significant difference between CG and EG regarding FRAP. In line with this emerging finding, the survey conducted by [15-17] concluded that long-term use of oral contraceptives causes abnormalities in the liver. In the group of 42 women of an average age of 32 years using oral contraceptives. These women were matched with control women who were not using any contraceptives. It was indicated that there was a significant difference between cases and control movement because women taking oral contraceptives are associated with liver abnormalities, such as liver cell adenomas and hemorrhage into the tumour. Thus, it was concluded that prolonged use of oral contraceptives causes abnormalities in the liver. Finding of the study conducted by [18-20] support the present study reveals that OCP is safe and having side effects in term of biochemical parameters of the body [14]. The study shows a significant difference between CG and EG regarding FRAP. In line with this emerging finding, the survey conducted by [15-17] concluded that long-term use of oral contraceptives causes abnormalities in the liver. In the group of 42 women of an average age of 32 years using oral contraceptives. These women were matched with control women who were not using any contraceptives. It was indicated that there was a significant difference between cases and control movement because women taking oral contraceptives are associated with liver abnormalities, such as liver cell adenomas and hemorrhage into the tumour. Thus, it was concluded that prolonged use of oral contraceptives causes abnormalities in the liver. Finding of the study conducted by [18-20] support the present study reveals that OCP is safe and having side effects in term of biochemical parameters of the body [14]. The study shows a significant difference between CG and EG regarding FRAP. In line with this emerging finding, the survey conducted by [15-17] concluded that long-term use of oral contraceptives causes abnormalities in the liver. In the group of 42 women of an average age of 32 years using oral contraceptives. These women were matched with control women who were not using any contraceptives. It was indicated that there was a significant difference between cases and control movement because women taking oral contraceptives are associated with liver abnormalities, such as liver cell adenomas and hemorrhage into the tumour. Thus, it was concluded that prolonged use of oral contraceptives causes abnormalities in the liver. Finding of the study conducted by [18-20] support the present study reveals that OCP is safe and having side effects in term of biochemical parameters of the body [14]. The study shows a significant difference between CG and EG regarding FRAP. In line with this emerging finding, the survey conducted by [15-17] concluded that long-term use of oral contraceptives causes abnormalities in the liver. In the group of 42 women of an average age of 32 years using oral contraceptives. These women were matched with control women who were not using any contraceptives. It was indicated that there was a significant difference between cases and control movement because women taking oral contraceptives are associated with liver abnormalities, such as liver cell adenomas and hemorrhage into the tumour. Thus, it was concluded that prolonged use of oral contraceptives causes abnormalities in the liver.

CONCLUSIONS

Based on the analysis, the researcher arrived at the conclusion that there is no significant difference between the blood urea of the control and subjects. It means that OCP has no effect on blood urea. In addition, the researcher also draws the conclusion that OCP has a significant impact on the antioxidant system and cause oxidative stress among its user.

Conflicts of Interest

The authors declare no conflict of interest.

Source of Funding

The author(s) received no financial support for the research, authorship and/or publication of this article.

References

