

PAKISTAN JOURNAL OF HEALTH SCIENCES

(LAHORE)

https://thejas.com.pk/index.php/pjhs ISSN (E): 2790-9352, (P): 2790-9344 Volume 6, Issue 10 (October 2025)

Original Article

Outcome of Topical Dapsone 5% Versus Topical Clindamycin 1% in Treatment of Mild to Moderate Acne Vulgaris

Muhammad Bilal Iftikhar¹, Zareen Saqib¹ and Bushra Bashir¹

Department of Dermatology, Khawaja Muhammad Safdar Medical College, Sialkot, Pakistan

ARTICLE INFO

Keywords:

Acne Vulgaris, Clindamycin 1% Gel, Dapsone 5% Gel, Global Acne Grading System

How to Cite:

Iftikhar, M. B., Saqib, Z., & Bashir, B. (2025). Outcome of Topical Dapsone 5% Versus Topical Clindamycin 1% in Treatment of Mild to Moderate Acne Vulgaris: Topical Dapsone 5% Versus Topical Clindamycin 1% in Treatment of Acne Vulgaris. Pakistan Journal of Health Sciences, 6(10), 72–77. https://doi.org/10.54 393/pjhs.v6i10.3443

*Corresponding Author:

Muhammad Bilal Iftikhar
Department of Dermatology, Khawaja Muhammad
Safdar Medical College, Sialkot, Pakistan
bilaliftikhar 28@qmail.com

Received Date: 20th August, 2025 Revised Date: 30th September, 2025 Acceptance Date: 17th October, 2025 Published Date: 31st October, 2025

ABSTRACT

Acne vulgaris is a common inflammatory skin disorder, and increasing resistance to conventional topical antibiotics has highlighted the need for alternative therapies such as dispone. Objective: To compare the outcome of topical dapsone 5% gel versus topical clindamycin 1% gel in the treatment of mild to moderate acne vulgaris. **Methods:** A Randomized Controlled trial was conducted in the Dermatology Department of Allama Iqbal Memorial Teaching Hospital, Sialkot, from February 2025 to July 2025. A total of 131 patients aged between 18 and 60 years, diagnosed with mild to moderate acne vulgaris based on the Global Acne Grading System (GAGS), were consecutively enrolled. Participants were randomly allocated into two groups (Group A: clindamycin 1% gel twice daily, Group B: dapsone 5% gel once daily). Both regimens were continued for 12 weeks. Mean difference and percentage reduction in GAGS scores, along with adverse events, were noted as outcomes. Results: Both groups had similar baseline characteristics without significant differences (p>0.05). At 12 weeks, mean GAGS scores were significantly lower in the clindamycin group (9.27 ± 2.95) than in the dapsone group (10.57 \pm 4.33; p=0.047). Percent reduction in GAGS score was also significantly greater with clindamycin (44.97 \pm 14.37) compared to dapsone (38.72 \pm 18.52; p=0.033). No adverse events occurred in the Clindamycin 1% gel group, while 5 (7.6%) in the Dapsone 5% gel group reported oily skin, pruritus, or irritation. Conclusions: Clindamycin 1% gel demonstrated superior efficacy and tolerability compared to Dapsone 5% gel in reducing acne severity over 12 weeks.

INTRODUCTION

Acne vulgaris is a common chronic inflammatory disorder affecting the pilosebaceous unit, arising from a combination of mechanisms such as excessive sebum secretion, obstruction of the follicular canal due to hyperkeratinization, proliferation of Cutibacterium acnes, and the resulting inflammatory cascade [1]. Clinically, it is characterized by recurrent comedones along with inflammatory papules and pustules. These lesions are commonly found on the face, but they can also develop on areas such as the trunk, neck, and Proximal arms [2]. While often considered a self-limiting ailment during adolescence and early adulthood, acne can cause lasting disfigurement in the form of scars and may contribute to

considerable psychological morbidity, underscoring the importance of effective treatment strategies [3]. There are various treatment options available for acne, ranging from topical medications to systemic treatments. Topical therapies, typically preferred for managing mild to moderate cases, include combinations of antibiotics and anti-inflammatory agents that offer ease of application and lower risk of systemic side effects [4]. Clindamycin 1% gel is a commonly used topical antibiotic [5]. It has demonstrated efficacy in managing mild to moderate acne [6]. However, the increasing resistance to Clindamycin is now a concern [7], even as a standalone therapy or in combination with systemic treatments [8]. The rise of

bacterial resistance linked to topical antibiotic use and side effects in a few cases emphasizes the need for alternative therapies [9]. Dapsone, classified as a sulfone, provides both anti-inflammatory and antimicrobial effects [10]. Although historically used as an oral treatment for acne, the risk of systemic toxicity limited its use [11]. Although various treatment modalities exist, there is limited regional evidence comparing topical clindamycin and dapsone, with few studies conducted in South Asia, including Pakistan [12] and neighboring countries [13]. Genetic predisposition, environmental exposures, and lifestyle habits unique to Pakistani patients are likely to influence acne severity and therapeutic response. Locally conducted studies are therefore essential to validate international findings and guide context-specific treatment strategies. Comparing topical dapsone and clindamycin is clinically significant, as increasing antibiotic resistance has reduced the long-term effectiveness of clindamycin, while dapsone offers an alternative with both antimicrobial and anti-inflammatory properties. Furthermore, adherence and cost considerations are critical in resource-constrained settings, underscoring the need for evidence to identify effective, practical, and sustainable treatment options.

This study aimed to evaluate the efficacy and safety of 5% topical dapsone versus 1% topical clindamycin in mild to moderate acne vulgaris, thereby generating locally relevant data to inform dermatologic practice.

METHODS

This randomized controlled trial was conducted in the Dermatology Unit of Allama Igbal Memorial Teaching Hospital, Sialkot, from February 2025 to July 2025. Before initiation, the study received ethical approval from the Institutional Review Board of Government Khawaja Muhammad Safdar Medical College, Sialkot (IRB No: 47/REC/KMSMC) and was registered in the Iranian Registry of Clinical Trials (IRCT No: IRCT20250124064503N1). No modification to the study was made after commencement. Patients aged 18 to 60 years of both genders, clinically confirmed as mild to moderate acne vulgaris, were screened for inclusion. Acne was classified into mild to moderate severity using the Global Acne Grading System (GAGS), and patients with scores between 0 and 30 were enrolled. Individuals with severe acne (GAGS ≥ 31), other facial dermatoses such as rosacea, pregnancy, lactation, known hypersensitivity to the study medications, recent systemic antibiotics (within four weeks) or topical antibiotics (within two weeks), and current use of medications that could exacerbate acne (e.g., glucocorticoids, phenytoin, isoniazid, lithium) were excluded. Sample size calculation was performed using Open Epi software, aiming to detect a difference in mean GAGS scores between both groups at the 12th week followup. Based on prior data, the anticipated mean GAGS scores were 5.0 ± 2.5 for the clindamycin group and 2.5 ± 4.1 for the dapsone group [14]. With a two-sided alpha of 0.05 and 80% power, 66 participants per group were required, totaling 132. One participant in the dapsone group withdrew, leaving 131 patients for analysis. After obtaining written informed consent, baseline demographic and clinical data were recorded. All eligible patients presenting during the study period were enrolled consecutively and then randomized into the two treatment groups, ensuring equal allocation and minimizing selection bias. Randomization was achieved via a computer-generated sequence, and assignment was performed by a separate staff member not involved in outcome assessment. Participants were allocated to one of two intervention arms using sealed opaque envelopes: Clindamycin 1% gel was prescribed for Group A to be applied twice per day, and dapsone 5% gel was given to Group B for once nightly application over 12 weeks. A CONSORT flow diagram has been provided to depict the screening, randomization, and allocation of participants (Figure 1).

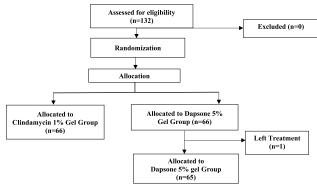


Figure 1: Consort Flow Showing Recruitment of Patients

Although differences in dosage frequency and formulation precluded double blinding, both the outcome assessor and the statistician remained blinded to group allocation. Patients were instructed on proper application techniques and dosing schedules. Follow-up assessments were conducted at the baseline and at weeks 4, 8, and 12. Adherence was monitored by checking returned medication tubes and residual content, supplemented by a treatment diary maintained by each participant, recording the date and time of applications. Clinical assessments were performed at baseline and at 12 weeks. The primary outcome was the mean difference in GAGS scores between groups, with greater reductions indicating higher efficacy. Secondary outcomes included the incidence of adverse events, documented through patient self-reports and clinical evaluation. Adverse events, defined in advance to ensure consistency, included skin irritation (stinging,

tingling, itching), burning sensation, pruritus, erythema, and increased oiliness. No changes were made to prespecified outcomes after trial initiation. Data were analyzed using IBM SPSS Statistics version 26.0 on a perprotocol basis, including only participants who completed the study as per the assigned treatment. No imputation methods (e.g., last observation carried forward) were applied for missing data. As attrition was minimal, the risk of attrition bias was considered low. Continuous variables, like age and how long participants had acne, were expressed as mean ± standard deviation (SD) and compared between the two groups using the independent samples ttest. Categorical data, including variables like gender, residential status, and acne severity, were expressed as frequencies and percentages, and analyzed using either the Chi-square test or Fisher's exact test, based on suitability. The Primary outcome, defined as the mean difference in GAGS score from the start of the study to week 12, was analyzed using the independent sample t-test to compare results between the two groups. Changes within each group over time were assessed using the paired samples t-test. The percentage reduction in GAGS scores was also calculated and analyzed between the groups using the independent t-test. All statistical analyses were two-sided, with a p-value<0.05 considered statistically significant. Additionally, 95% confidence intervals(CIs) were calculated for all mean differences.

RESULTS

The study was completed by 131 participants, with 66 receiving clindamycin 1% (Group A) and 65 assigned to the dapsone 5% treatment group (Group B). Study provides a summary of the Pre-treatment demographic and clinical characteristics. There were no significant differences between the two groups in terms of age, gender distribution, acne duration, place of residence, or baseline acne severity (p>0.05 for all), indicating that the two groups were statistically similar at baseline (Table 1).

Table 1: Initial Demographic and Clinical Profiles of Participants in the Clindamycin 1% and Dapsone 5% Treatment Groups

Variables	Total (n=131)	Clindamycin 1% (n=66)	Dapsone 5% (n=65)	p- Value
Age				
Years	21.57 ± 3.87	22.20 ± 4.30	20.94 ± 3.28	0.062α

≤22	88 (67.2%)	41 (46.6%)	47(53.4%)	0.214β
>22	43 (32.8%)	25 (58.1%)	18 (41.9%)] 0.21 4 p
Gender				
Male	27(20.6%)	11(40.7%)	16 (59.3%)	0.261β
Female	104 (79.4%)	55 (52.9%)	49 (47.1%)	0.201p
Duration of Acne				
Years	2.12 ± 1.99	2.11 ± 1.96	2.12 ± 2.04	0.981α
≤2	90 (68.7%)	45 (50.0%)	45 (50.0%)	0.897β
>2	41 (31.3%)	21(51.2%)	20 (48.8%)	σ.03/β
Residence				
Urban	105 (80.2%)	51(48.6%)	54 (51.4%)	0.405β
Rural	26 (19.8%)	15 (57.7%)	11(42.3%)	0.405p
Severity of Acne				
Mild	70 (53.4%)	36 (51.4%)	34 (48.6%)	0.797β
Moderate	61(46.6%)	30 (49.2%)	31(50.8%)	J 0.797p

Values are displayed as mean ± standard deviation for continuous variables and as frequency (percentage) for categorical variables. The p-values are calculated to assess baseline comparability between groups. αIndependent t-test applied. βChi-square/Fisher-Exact test applied. At study initiation, the mean GAGS scores were 17.67 ± 5.80 for the Clindamycin group and 18.18 ± 6.57 for the Dapsone group, with no statistically significant difference (p=0.633). At the end of the 12-week treatment period, both groups demonstrated a noticeable improvement in their GAGS scores. However, the clindamycin group exhibited a significant reduction, with a mean score of 9.27 \pm 2.95, compared to 10.57 \pm 4.33 in the dapsone group (p=0.047). A greater mean percentage decrease in GAGS scores was also observed in the Clindamycin group (44.97 ± 14.37) compared to the Dapsone group (38.72 \pm 18.52), with a difference in means of 6.25 (95% CI: 0.52-11.97, p=0.033)(Table 2).

Table 2: Comparison of Mean GAGS Scores Between Clindamycin 1% and Dapsone 5% Groups at Baseline and After 12 Weeks and Dapsone 5% Groups at Baseline and After 12 Weeks and Dapsone 5% Groups at Baseline and After 12 Weeks and Dapsone 5% Groups at Baseline and After 12 Weeks and Dapsone 5% Groups at Baseline and After 12 Weeks and Dapsone 5% Groups at Baseline and After 12 Weeks and Dapsone 5% Groups at Baseline and After 12 Weeks and Dapsone 5% Groups at Baseline and After 12 Weeks and Dapsone 5% Groups at Baseline and After 12 Weeks and Dapsone 5% Groups at Baseline and After 12 Weeks and Dapsone 5% Groups at Baseline and After 12 Weeks and Dapsone 5% Groups at Baseline and After 12 Weeks and Dapsone 5% Groups at Baseline and After 12 Weeks and Dapsone 5% Groups at Baseline and After 12 Weeks and Dapsone 5% Groups at Baseline After 5% Groups at Baseline and Dapsone 5% Groups at Baseline After 5% Groups at Baseline 5% Groups at Baseline 5% Groups at Baseline 5% Groups at Baseline 5% Groups at Baselin

Time Point	Group	N	Mean ± SD	Mean Difference	95% Cl of Difference	t (df)	p-Value
Baseline -	Clindamycin 1%	66	17.67 ± 5.80	-0.52	-2.66 to 1.62	-0.478 (129)	0.633
	Dapsone 5%	65	18.18 ± 6.57	-0.52			
12 Weeks	Clindamycin 1%	66	9.27 ± 2.95	-1.30	-2.58 to -0.02	-2.007(129)	0.047*
	Dapsone 5%	65	10.57 ± 4.33	-1.50			
Percent Reduction -	Clindamycin 1%	65	44.97 ± 14.37	6.25	0.52 to 11.97	2.159 (129)	0.033*
	Dapsone 5%	66	38.72 ± 18.52				

SD = Standard deviation; CI = Confidence interval; df = Degrees of freedom; p < 0.05 considered statistically significant. *Statistically significant difference.

No adverse events were reported in the Clindamycin group. In contrast, 5 participants (7.6%) in the Dapsone group reported adverse events. Among these, oily skin and pruritus were the most commonly observed, each occurring in 2 participants (40%), while one participant (20%) experienced skin irritation (Table 3).

Table 3: Frequency and Percentage Distribution of Adverse Effects and Specific Adverse Events among Study Participants

Adverse Effects	Specific Event	Frequency (%)
Any Adverse Effect	Clindamycin 1% gel (n=66)	0(0%)
Ally Adverse Effect	Dapsone 5% gel (n=65)	5(7.6%)
T f Adv	Irritation	1(20.0%)
Type of Adverse Effect in Dapsone 5% Gel (n=5)	Oily skin	2(40.0%)
23,000007,007(11-0)	Pruritus	2(40.0%)

DISCUSSION

This randomized controlled trial demonstrated that topical 1% clindamycin gel led to significantly greater improvement in acne severity compared to topical 5% dapsone gel, as measured by mean GAGS score reduction and percent reduction after 12 weeks, with both agents showing a favorable safety profile. Our findings differ from those of a clinical trial conducted in Bangladesh, which compared topical dapsone gel with clindamycin cream applied over a 4-week period in patients with mild to moderate acne vulgaris [15]. That study found no statistically significant variation between both groups in terms of comedone, papule, pustule counts, or total acne score at final follow-up. Though similar to the current study finding, percent reduction in acne severity was numerically higher for clindamycin (74.77%) than dapsone (69.20%), but this difference was not statistically significant [15]. Notably, the treatment period in that trial was shorter (4 weeks) compared to our 12-week intervention, which may partly explain why our study detected statistically significant differences favoring clindamycin. Additionally, the Bangladesh study used clindamycin cream rather than gel, which can have different skin penetration characteristics. Similarly, Iftikhar et al. (2025), in a Lahorebased study reported that dapsone 5% gel monotherapy significantly reduced total lesion counts after 12 weeks [16]. Another important point of notice is that in the current study Clindamycin 1% gel was given twice a day whereas Dapsone 5% gel once daily. This deviates from most studies which use once daily dose for both. The reason behind using Clindamycin 1% gel twice a day in the current study is because of its short half-life while Dapsone 1% gel longer half-life allows once daily dosing. Our results are partially aligned with those of Iqra et al. in Pakistan, who compared topical dapsone 5% gel and clindamycin 1% gel in mild to

moderate acne vulgaris and reported clindamycin 1% gel as effective [17]. In contrast, earlier Indian studies, such as those reported by Verma et al. have found no significant difference between the two agents when used as monotherapy [18]. This variation may be explained by differences in treatment protocols, particularly our twicedaily clindamycin application versus once-daily dapsone and regional differences in Cutibacterium acnes resistance profiles. Several South Asian studies have evaluated only dapsone 5% gel or with other regimens, such as Fatima et al. who compared it to adapalene 0.1% gel [19]. Similar findings were reported by Darjani et al. from Iran who reported dapsone 5% gel as effective compared to benzoyl peroxide 5% in combination with doxycycline [20]. These trials demonstrated significant reductions in inflammatory and non-inflammatory lesions with dapsone, highlighting its safety and tolerability. With respect to safety, the low incidence of mild adverse effects in our trial (3.8%) is in line with prior reports, including the Bangladesh study [15] and trials by Igra et al. [17]. Lastly, a previous study from Pakistan reported significant associations between acne occurrence and factors such as skin type, physical activity, menstrual cycle, and use of skincare products like toners. These population-specific and potentially modifiable factors warrant further exploration in relation to treatment response [21]. Most adverse events were mild and self-limiting, and no participant discontinued treatment due to side effects, reinforcing the tolerability of both agents. The study had several strengths, including an adequately calculated sample size, use of standardized and validated outcome measures (GAGS), and active compliance monitoring. The results of this study have important clinical and public health implications. Clinically, the superior efficacy of clindamycin 1% gel in reducing acne severity, combined with its favorable safety profile, supports its use as a firstline topical therapy for mild to moderate acne vulgaris. These findings provide evidence to guide dermatologists in selecting treatments that optimize patient outcomes, enhance adherence, and minimize adverse effects. From a public health perspective, acne represents a common chronic condition that can substantially affect psychosocial well-being and quality of life. Demonstrating effective and well-tolerated topical interventions, such as clindamycin, can contribute to reducing the overall burden of disease, improving patient satisfaction, and informing treatment guidelines in local clinical settings. Collectively, these results underscore the importance of evidencebased, context-specific approaches to acne management that address both individual patient care and broader public health priorities. Future research should focus on multi-center trials across Pakistan and neighboring countries to address regional variability in treatment

response and resistance patterns. Studies comparing combination regimens such as clindamycin with benzoyl peroxide versus dapsone monotherapy could provide more practical clinical guidance. Extended follow-up studies are necessary to evaluate relapse rates and the long-term effectiveness beyond the 12 weeks.

CONCLUSIONS

This randomized controlled trial compared the efficacy and safety of topical clindamycin 1% gel and topical dapsone 5% gel in patients with mild to moderate acne vulgaris. Clindamycin demonstrated superior reduction in GAGS scores over 12 weeks, while both treatments were well tolerated with minimal adverse events.

Authors Contribution

Conceptualization: MBI Methodology: MBL, ZS Formal analysis: MBI

Writing review and editing: BB

All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Source of Funding

The author received no financial support for the research, authorship and/or publication of this article.

REFERENCES

- [1] Bernales Salinas A. Acne Vulgaris: Role of the Immune System. International Journal of Dermatology. 2021 Sep; 60(9): 1076-81. doi: 10.1111/ijd.15415.
- [2] Vasam M, Korutla S, Bohara RA. Acne Vulgaris: A Review of the Pathophysiology, Treatment, and Recent Nanotechnology Based Advances. Biochemistry and Biophysics Reports. 2023 Dec; 36: 101578. doi:10.1016/j.bbrep.2023.101578.
- [3] Sood S, Jafferany M, Vinaya Kumar S. Depression, Psychiatric Comorbidities, and Psychosocial Implications Associated with Acne Vulgaris. Journal of Cosmetic Dermatology. 2020 Dec; 19(12): 3177-82. doi: 10.1111/jocd.13753.
- [4] Leung AK, Barankin B, Lam JM, Leong KF, Hon KL. Dermatology: How to Manage Acne Vulgaris. Drugs in Context. 20210ct; 10. doi: 10.7573/dic.2021-8-6.
- [5] Eichenfield DZ, Sprague J, Eichenfield LF. Management of Acne Vulgaris: A Review. Journal of the American Medical Association. 2021 Nov; 326(20): 2055-67. doi: 10.1001/jama.2021.17633.
- [6] Reynolds RV, Yeung H, Cheng CE, Cook-Bolden F, Desai SR, Druby KM et al. Guidelines of Care for the

- Management of Acne Vulgaris. Journal of the American Academy of Dermatology. 2024 May; 90(5): 1006-e1. doi: 10.1016/j.jaad.2023.12.017.
- [7] Del Rosso JQ, Bunick CG, Kircik L, Bhatia N. Topical Clindamycin in the Management of Acne Vulgaris: Current Perspectives and Recent Therapeutic Advances. Journal of Drugs in Dermatology. 2024 Jun; 23(6): 438-45. doi: 10.36849/JDD.8318.
- [8] Guay DR. Topical Clindamycin in the Management of Acne Vulgaris. Expert Opinion on Pharmacotherapy. 2007 Oct; 8(15):2625-64. doi: 10.1517/14656566.8.15.2 625.
- [9] George S, Muhaj FF, Nguyen CD, Tyring SK. Part I Antimicrobial Resistance: Bacterial Pathogens of Dermatologic Significance and Implications of Rising Resistance. Journal of the American Academy of Dermatology. 2022 Jun; 86(6): 1189–204. doi: 10.1016/j.jaad.2021.11.066.
- [10] Wang X, Wang Z, Sun L, Liu H, Zhang F. Efficacy and Safety of Dapsone Gel for Acne: A Systematic Review and Meta-Analysis. Annals of Palliative Medicine. 2022 Feb; 11(2): 61120-620. doi: 10.21037/apm-21-3935.
- [11] Nickles MA and Lake E. Topical Dapsone in the Treatment of Acne: A Systematic Review. International Journal of Dermatology. 2022 Nov; 61(11): 1412-21. doi: 10.1111/ijd.16074.
- [12] Sanawar P, Ghafoor R, Jabeen N, Asadullah K, Qadir M, Siddiqui FI. Comparison of the Efficacy of Clindamycin Phosphate Gel 1% Versus Once-Daily Dapsone Gel 5% in the Treatment of Moderate Acne Vulgaris at the Tertiary Care Hospital, Karachi. Journal of Population Therapeutics and Clinical Pharmacology. 2024 Jan; 31(1): 157-62. doi: 10.53555/jptcp.v31i1.3947.
- [13] Brar BK, Kumar S, Sethi N. Comparative Evaluation of Dapsone 5% Gel Vs. Clindamycin 1% Gel in Mild to Moderate Acne Vulgaris. Gulf Journal of Dermatology and Venereology. 2016; 23(1): 34-9.
- [14] Shah A, Sharma P, Raghuwanshi J, Mehra A, Bansal I, Bhindia J. A Comparative Study of Efficacy of Topical Clindamycin 1% Gel V/S Topical Dapsone 5% Gel in the Treatment of Acne Vulgaris. Journal of cardiovascular Disease Research. 2024; 15(1).
- [15] Islam R, Islam MN, Mosharraf Hossain M. An Assessment of the Efficacy and Safety of Dapsone Gel: Study in A Local Setting. Scholars Journal of Applied Medical Sciences. 2021 Apr; 9(4): 549-3. doi: 10.36347/sjams.2021.v09i04.012..
- [16] Iftikhar A, Luqman N, Mubeen S, Tariq M, Khalid H, Naseer K. Comparison of the Efficacy of 5% Dapsone Gel and 1% Clindamycin Phosphate Gel in the

- Treatment of Mild to Moderate Acne Vulgaris. Journal of Pakistan Association of Dermatologists. 2025 Jan; 35(1).
- [17] Iqra S, Ghafoor RG, Ali A, Qadir MZ, Khurram M. Comparison of Efficacy of Dapsone 5% Gel Vs Clindamycin 1% Gel in Mild to Moderate Acne Vulgaris. Indus Journal of Bioscience Research. 2025 Jan; 3(1): 120-4. doi: 10.70749/ijbr.v3i1.458.
- [18] Verma R, Yadav P, Chudhari M, Patel J, Umrigar D. Comparison of Efficacy of Two Topical Drug Therapy of Acne Vulgaris-1% Clindamycin Versus 5% Dapsone: A Split Face Comparative Study. National Journal of Physiology, Pharmacy and Pharmacology. 2022 Jun; 12(6): 817-. doi: 10.5455/njppp.2022.12.031 00202221042022.
- [19] Fatima A, Bari AU, Warraich FK, Ghaus I, Gul N, Akhtar B et al. Efficacy of Topical Dapsone 5% Gel and Topical Adapalene 0.1% Gel in Treatment of Mild to Moderate Acne Vulgaris: Topical Dapsone and Adapalene in Acne. Pakistan Journal of Health Sciences. 2025 Apr; 6(4): 144-8. doi: 10.54393/pjhs. v6i4.2596.
- [20] Darjani A, Aboutaleb E, Alizadeh N, Rafiei R, Gharaee Nejad K, Nabatchii S et al. Efficacy, Safety, and Tolerability of Dapsone 5% Gel and Benzoyl Peroxide 5% Gel in Combination with Oral Doxycycline in Treating Moderate Acne Vulgaris: A Randomized Clinical Trial. Iranian Journal of Dermatology. 2022 Jun; 25(2): 132-41.
- [21] Raza Z, Sarwar N, Maryam L, Rafiq T, Farhan W, Ahmer M et al. Acne and Its Association with Modifiable Factors amongst Young Adults of Islamabad-A Cross Sectional Study. Journal of Pakistan Association of Dermatologists. 2025 Oct; 31(3): 398-406.