DOI: https://doi.org/10.54393/pjhs.v6i8.2386

PAKISTAN JOURNAL OF HEALTH SCIENCES

(LAHORE)

https://thejas.com.pk/index.php/pjhs ISSN (E): 2790-9352, (P): 2790-9344 Volume 6, Issue 08 (August 2025)

Original Article

Association between Bronchiectasis Exacerbations and FEV1 Changes at A Tertiary Care Center

Muhammad Ahmad¹, Umair Arshad², Saba Fatima³, Arslan Igbal¹ and Abdul Salam⁴

¹Department of Pulmonology, Central Park Teaching Hospital, Lahore, Pakistan

ARTICLE INFO

Keywords:

FEV1, Exacerbations, Bronchiectasis, Chronic Obstructive Pulmonary Disease

How to Cite:

Ahmad, M., Arshad, U., Fatima, S., Iqbal, A., & Salam, A. (2025). Association between Bronchiectasis Exacerbations and FEV1 Changes at A Tertiary Care Center: Bronchiectasis Exacerbations and FEV1 Changes . Pakistan Journal of Health Sciences, 6(8), 123-127. https://doi.org/10.54393/pjhs.v6i8.2386

*Corresponding Author:

Muhammad Ahmad Department of Pulmonology, Central Park Teaching Hospital, Lahore, Pakistan doctor.ahmad84@gmail.com

Received Date: 15th January, 2025 Revised Date: 2nd August, 2025 Acceptance Date: 8th August, 2025 Published Date: 31st August, 2025

ABSTRACT

Bronchiectasis, a common respiratory disease, presents a healthcare challenge since its evaluations do not often include health-related quality of life assessments. Objectives: To determine whether there is a correlation between the number of exacerbations experienced with non-cystic fibrosis bronchiectasis at baseline and the number of exacerbations experienced throughout follow-up, and identify any time-related changes in FEV1. Methods: 115 bronchiectasis patients were included prospectively. Evaluation of the correlation between exacerbations during the 24-month baseline period and 0-to-24-month and 24-to-48-month follow-up periods was done. Outcomes were changes in FEV1 and percentage of predicted FEV1 after 24 months, with stratification based on frequency of initial exacerbations. SPSS version 24.0 was used to analyze data. **Results:** 78 (67.8%) were female. The mean age was 63.7 years. The mean duration of bronchiectasis was 6.5 years. Mean BMI was 23.7 kg/m2. The most common comorbidities were asthma and COPD. Frequency of exacerbations was 68 (59.1%). A baseline exacerbation was substantially linked to subsequent exacerbation at 0-24 months (p=0.0067) and 24-48 months (p<0.0002). Baseline FEV1 was considerably lower in patients with more exacerbations, but the drop was not significant between exacerbations. With more initial exacerbations, patients had substantially poorer FEV1 % predicted at baseline (p<0.0002), 12 (p=0.0003), and 24 months (p<0.0002). Conclusions: Patients with flaring up of bronchiectasis were more likely to experience future exacerbations and have a lower FEV1 to begin with. However, the drop in FEV1 may be unrelated to the frequency of exacerbations at baseline.

INTRODUCTION

Bronchiectasis (BE) is a chronic structural respiratory disease that causes bronchial dilatation and, in extreme cases, hospitalization for an exacerbation [1]. Although the exact prevalence of BE is unclear, the average ageadjusted hospitalization rate in the US is 16.5 per 100,000 people and 9.4 per 100,000 in Germany [2]. There were no obvious signs of hospital need; however, the over-60 age group and women had higher hospitalization rates. The causes behind the wide difference in patients' annual average rates of exacerbations remain unknown [3]. Exacerbations can deteriorate lung function, lead to a bad

prognosis, increase mortality, and increase expenditures, just like other chronic respiratory illnesses [4]. The average number of exacerbations each year is two or more for patients with advanced disease stages and high scores on the FACED or Bronchiectasis Severity Index (BSI) [5]. Additionally, these patients typically have lengthier hospital stays [6, 7]. Lung imaging shows abnormal thickening and dilating of the bronchial walls in bronchiectasis, a disorder not caused by cystic fibrosis, along with coughing and sputum production [8]. One substantial feature of the natural history of bronchiectasis

²Department of Pulmonology, Gujranwala Medical College Teaching Hospital, Gujranwala, Pakistan

³Department of Medicine, Central Park Teaching Hospital, Lahore, Pakistan

⁴Department of Pulmonology, Sheikh Zayed Hospital, Rahim Yar Khan, Pakistan

is the worsening of symptoms with time [9, 10]. Bronchiectasis exacerbations are linked to respiratory distress in addition to deteriorating lung function, increased mortality, diminished quality of life, and hospitalization risk. Adults in the US with bronchiectasis have not had their features studied until recently. Growing evidence from the US Bronchiectasis Research Registry (BRR) suggests that the majority (60 %) of bronchiectasis patients were nonsmokers, while 89 % were white, and 79 % were female. Approximately 63% of patients had Non-Tuberculosis Mycobacteria (NTM) sickness or NTM isolated during first evaluation [11]. The median age of the patients was 64 years. Studies that depended on claims data likely exaggerated the clinical burden of bronchiectasis exacerbations since data on the severity of the ailment are difficult to collect [8, 9]. Predicted FEV1% is negatively correlated with the frequency of exacerbations in chronic obstructive pulmonary disease (COPD) patients; however, this is not necessarily the case [12]. The most prominent feature of lung sickness following tuberculosis is bronchiectasis, which can range from moderate traction bronchiectasis to clinically severe bronchial dysfunction. Regarding the association between this kind of bronchiectasis and other NCFBs, there is a lack of data in the medical literature [13]. The conventional medical terminology for these disorders includes chronic obstructive pulmonary disease (COPD), asthma, and bronchiectasis. Having said that, it is an entirely distinct species. Pulmonary function tests are used to objectively evaluate the state of the lungs. Bronchitis is the most common cause of obstructive disability [14]. If lung function declines, the disease will deteriorate, the risk of mortality will rise, and the likelihood of an exacerbation requiring hospitalization will rise. While dealing with bronchiectasis, airway hyper-responsiveness has a negative correlation with quality of life, baseline spirometric values, and exacerbation frequency [15].

This study aimed to find out how FEV1 changed over time in relation to the frequency of bronchiectasis exacerbations at baseline and secondly to evaluate the correlation between the two variables throughout the 48-month follow-up period after the 24-month baseline.

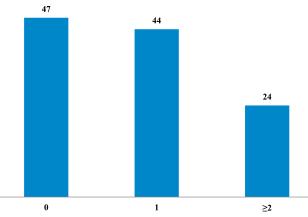
METHODS

This prospective study using non-probability consecutive sampling was conducted at the Department of Pulmonology and Critical Care, Central Park Teaching Hospital, Lahore, during January 2023 to December 2024, after approval from the Ethical Committee Ref. No. IRB-0293-344. Following patients' informed permission, trained personnel at each research location used predesigned standardized data collection forms of the hospital to collect patients' medical records. The sample

size for the study was calculated using the Open-Epi online software for sample size calculation. Keeping the prevalence of bronchiectasis at 8 % as reported in research, the sample size came out to be 114 at a 95 %confidence level and 5 % margin of error [16]. The study only included individuals who consented to reveal bronchiectasis exacerbations. The age range was 18 to 75 years. The 24 months preceding the inclusion of patients served as the baseline period for this inquiry. The purpose of the 48-month follow-up was to determine whether or not the overall number of exacerbations was related to the number of bronchiectasis exacerbations that were present at baseline. In order to determine if there was a correlation between the frequency of bronchiectasis exacerbations and changes in FEV1, participants received both baseline and 24-month FEV1 data. Baseline data were evaluated during the 24 months before enrollment, a follow-up window from 0 to 24 months (combining visits 1 and 2), and a follow-up window from 24 to 48 months (combining visits 3 and 4). Our baseline data were collected during 24 months before enrollment, so that's why we used that interval. Patients were classified over time based on the frequency of bronchiectasis exacerbations, which may be either zero or one or more. A sub-analysis was performed at each time point to further classify patients based on whether they experienced 0, 1, or ≥2 exacerbations. For data analysis, SPSS version 24.0 was used. Using descriptive statistics, the study examined the entire research population as well as subgroups broken down by the existence and frequency of exacerbations. To compare values within the strata, continuous variables were subjected to analysis of variance (ANOVA), whereas categorical variables were tested using chi-squared tests. A significance threshold of $\alpha = 0.05$ was established.

RESULTS

The majority of the presented cases, 78 (67.8%), were female. The mean age was 63.7 years. The mean duration of bronchiectasis was 6.5 years. The mean BMI of the cases was 23.7 kg/m2. The most common comorbidities were asthma and COPD. There were 45 (39.1%) smokers among all cases (Table 1).


Table 1: Characteristics of the Cases That Were Included

Variables	n(%)		
Sex			
Female	78 (67.8%)		
Male	37(32.2%)		
Mean Age			
Years	63.7		
BMI			
Mean (kg/m²)	23.7		

Duration of Bronchiectasis			
Mean (Years)	6.5		
Comorbidities			
Asthma	53 (46.1%)		
COPD	45 (39.1%)		
No	17 (14.8 %)		
Smoking Habit			
Yes	45 (39.1%)		
No	70 (60.9%)		

Frequency of exacerbations was 68 (59.1%), with 44 (38.3%) experiencing 1 exacerbation, while ≥ 2 in 24 (20.9%) patients (Figure 1).

Number of Exacerbations

Figure 1: Frequency of Exacerbations in Included Patients (n=115) At baseline, bronchiectasis exacerbation was substantially linked to a subsequent exacerbation at 0-24 months (p=0.0067) and 24-48 months (p<0.0002) (Table 2).

Table 2: Relationship Between the Number of Bronchiectasis Exacerbations (0 Or More) At Baseline and at the 0-To-24 and 24-To-48 Month Follow-Ups

Variables	Baseline	0-24 Months	24-48 Months	
Bronchiectasis Exacerbation				
0	46.5 %	41.7%	20.6%	
≥1	32.5 %	32.7 %	52.5 %	
≥2	21 %	25.6 %	26.9 %	

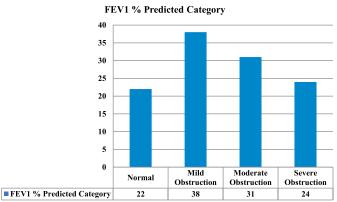

The baseline FEV1 was considerably lower in patients with more exacerbations, but the drop was not significant between those with 0, 1, and \geq 2 exacerbations. A lower projected FEV1 % was related to more baseline and follow-up exacerbations. There was no difference in the average change from baseline according to the number of bronchiectasis exacerbations present at baseline; however, FEV1 was lower during follow-up visits (Table 3).

Table 3: Overall FEV1 Change from Start, Stratified by Bronchiectasis Exacerbations

FEV1	Exacerbations (0)	Exacerbations (1)	Exacerbations (≥2)
At Start	1.87 (0.51)	1.75 (0.67)	1.67 (0.48)

First Visit (1-12 Months)	-0.037 (0.021)	-0.035(0.020)	0.004 (0.024)
Second Visit (24 Months)	-0.070 (0.030)	0.068 (0.023)	-0.052 (0.028)

With more initial exacerbations, patients had substantially poorer FEV1 % predicted at baseline (p<0.0002), 12 (p=0.0003), and 24 months (p<0.0002). The predicted FEV1 included a normal FEV1 in 22 (19.13 %) patients, mild obstruction in 38 (33 %), moderate obstruction in 31(27 %), and severe obstruction in 24 (20.9 %) of patients. An FEV1 of >80 % was considered normal, between 65-79 % as mild obstruction, between 50-64 % as moderate obstruction, and <50 % as severe obstruction (Figure 2).

Figure 2: Graphical Representation of Predicted FEV1 at 24 Months(n=115)

DISCUSSIONS

A lower forced expiratory volume in one second (FEV1) was associated with a higher number of bronchiectasis exacerbations at baseline, and having an elevated risk of future exacerbations was the other finding of this study. Patients with two or more exacerbations at baseline showed a significantly lower mean FEV1 at baseline and throughout time compared to patients without exacerbations at baseline. Exacerbations of bronchiectasis were much more likely to occur throughout the follow-up period if participants had a history of them at baseline, according to this study. There was a statistically significant correlation between the number of exacerbations a patient experienced at baseline and the number of exacerbations they experienced over the 0-to-24 months and 24-to-48 months' follow-up periods. Neither the baseline nor the post-intervention numbers of exacerbations were substantially linked to one another. Incorporating the frequency and severity of exacerbations into the E-FACED score enhanced the potential to predict future annual exacerbations, according to research that developed and externally validated the score in 1470 bronchiectasis patients [16]. A study included 2572 bronchiectasis patients from European and Israeli institutions found that a history of frequent exacerbations

was the strongest predictor of future exacerbations. The incidence rate ratios rose in tandem with the number of annual exacerbations at baseline, which went from 1 to 2 to 3 or more [17]. There was an increased adjusted likelihood of bronchiectasis exacerbations occurring throughout the follow-up period in this investigation. The risk of future exacerbations was 1.5 times higher for baseline exacerbations and 2.4 times higher for subsequent exacerbations in the two years that followed. Patients who have exacerbations more frequently have a more severe condition, a worse quality of life, and a greater mortality rate [18]. The mortality rate was double for patients with bronchiectasis who experienced three or more exacerbations per year compared to those who did not, according to a prospective cohort analysis of 608 individuals [19, 20]. The current study demonstrated that the mean forced expiratory volume in one second (FEV1) was significantly lower at baseline and throughout time for people with two or more bronchiectasis exacerbations compared to those without such episodes. A robust association between the baseline exacerbation frequency and the FEV1 suggested the existence of a minor pulmonary obstruction. Previous studies have connected patient factors such as systemic inflammation and prolonged P. aeruginosa colonization to a worsening of symptoms, as well as decreased forced expiratory volumes in one second (FEV1) [21]. Researchers found that at least one P. aeruginosa isolation significantly predicted a quicker FEV1 decline in COPD patients in a post hoc analysis of an 84-month prospective cohort [22]. Reduced FEV1 has also been linked to worsened symptoms in other chronic lung disorders, including cystic fibrosis [23]. Regardless of the number of bronchiectasis exacerbations in the current trial, the rate of fall in FEV1 was not substantially different among the three groups of patients $(0, 1, and \ge 2)$ exacerbations during baseline). To have a complete understanding of the correlation between exacerbations and the decrease in FEV1 in bronchiectasis patients, future research should consider the severity of exacerbations.

CONCLUSIONS

The study found that individuals whose bronchiectasis flared up more often were more likely to experience future exacerbations and have a lower FEV1 to begin with. However, the drop in FEV1 may be unrelated to the frequency of exacerbations at baseline.

Authors Contribution

Conceptualization: MA Methodology: MA, SF Formal analysis: AI, AS

Writing review and editing: MA, UA

All authors have read and agreed to the published version of the manuscript

Conflicts of Interest

All the authors declare no conflict of interest.

Source of Funding

The author received no financial support for the research, authorship and/or publication of this article.

REFERENCES

- [1] O'Donnell AE. Bronchiectasis—A Clinical Review. New England Journal of Medicine. 2022 Aug; 387(6): 533-45. doi: 10.1056/NEJMra2202819.
- [2] Navarro-Rolon A, Rosa-Carrillo DD, Esquinas C, Miravitlles M, Martinez-García MA, Almagro P. Evolution and Comparative Analysis of Hospitalizations in Spain Due to COPD and Bronchiectasis Between 2004 and 2015. Journal of Chronic Obstructive Pulmonary Disease. 2021 Mar; 18(2): 210-8. doi: 10.1080/15412555.2021.1896692.
- [3] Alcaraz-Serrano V, Gimeno-Santos E, Scioscia G, Gabarrús A, Navarro A, Herrero-Cortina B et al. Association Between Physical Activity and Risk of Hospitalization in Bronchiectasis. European Respiratory Journal. 2020 Jun; 55(6). doi: 10.1183/ 13993003.02138-2019.
- [4] De Angelis A, Johnson ED, Sutharsan S, Aliberti S. Exacerbations of Bronchiectasis. European Respiratory Review. 2024 Jul; 33(173). doi: 10.1183/16 000617.0085-2024.
- [5] He M, Zhu M, Wang C, Wu Z, Xiong X, Wu H et al. Prognostic Performance of the FACED Score and Bronchiectasis Severity Index in Bronchiectasis: A Systematic Review and Meta-Analysis. Bioscience Reports. 2020 Oct; 40(10): BSR20194514. doi: 10.1042/BSR20194514.
- [6] Goyal V, McPhail SM, Hurley F, Grimwood K, Marchant JM, Masters IB et al. Cost of Hospitalization for Bronchiectasis Exacerbation in Children. Respirology. 2020 Dec; 25(12): 1250-6. doi: 10.1111/re sp.13828.
- [7] Howarth T, Gibbs C, Heraganahally SS, Abeyaratne A. Hospital Admission Rates and Related Outcomes Among Adult Aboriginal Australians with Bronchiectasis-A Ten-Year Retrospective Cohort Study. BioMed Central Pulmonary Medicine. 2024 Mar; 24(1): 118. doi: 10.1186/s12890-024-02909-x.
- [8] Tiddens HA, Meerburg JJ, Van der Eerden MM, Ciet P. The Radiological Diagnosis of Bronchiectasis: What's in A Name? European Respiratory Review. 2020 Jun; 29(156). doi: 10.1183/16000617.0120-2019.
- [9] Gao YH, Abo Leyah H, Finch S, Lonergan M, Aliberti S, De Soyza A et al. Relationship Between Symptoms, Exacerbations, and Treatment Response in Bronchiectasis. American Journal of Respiratory and

- Critical Care Medicine. 2020 Jun; 201(12): 1499-507. doi: 10.1164/rccm.201910-19720C.
- [10] Despotes KA, Choate R, Addrizzo-Harris D, Aksamit TR, Barker A, Basavaraj A et al. Nutrition and Markers of Disease Severity in Patients with Bronchiectasis. Chronic Obstructive Pulmonary Diseases: Journal of the Chronic Obstructive Pulmonary Disease Foundation. 2020 Oct; 7(4): 390. doi: 10.15326/j copdf.7.4.2020.0178.
- [11] Aksamit TR, O'Donnell AE, Barker A, Olivier KN, Winthrop KL, Daniels ML et al. Adult Patients with Bronchiectasis: A First Look at the US Bronchiectasis Research Registry. Chest. 2017 May; 151(5): 982-92. doi: 10.1016/j.chest.2016.10.055.
- [12] Bhatt SP, Nakhmani A, Fortis S, Strand MJ, Silverman EK, Sciurba FC et al. FEV1/FVC Severity Stages for Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine. 2023 Sep; 208(6): 676-84. doi: 10.1164/rccm.202303-04500C.
- [13] Allwood BW, Byrne A, Meghji J, Rachow A, Van Der Zalm MM, Schoch OD. Post-Tuberculosis Lung Disease: Clinical Review of an Under-Recognized Global Challenge. Respiration. 2021 Aug; 100(8): 751-63. doi:10.1159/000512531.
- [14] Al-Harbi A, Al-Ghamdi M, Khan M, Al-Rajhi S, Al-Jahdali H. Performance of Multidimensional Severity Scoring Systems in Patients with Post-Tuberculosis Bronchiectasis. International Journal of Chronic Obstructive Pulmonary Disease. 2020 Sep: 2157-65. doi: 10.2147/COPD.S261797.
- [15] Quint JK, Millett ER, Joshi M, Navaratnam V, Thomas SL, Hurst JR et al. Changes in the Incidence, Prevalence and Mortality of Bronchiectasis in the UK from 2004 to 2013: A Population-Based Cohort Study. European Respiratory Journal. 2015 Dec; 47(1):186-93. doi: 10.1183/13993003.01033-2015.
- [16] Chalmers JD, Aliberti S, Filonenko A, Shteinberg M, Goeminne PC, Hill AT et al. Characterization of the "Frequent Exacerbator Phenotype" in Bronchiectasis. American Journal of Respiratory and Critical Care Medicine. 2018 Jun; 197(11): 1410-20. doi: 10.1164/rccm.201711-22020C.
- [17] Menéndez R, Méndez R, Polverino E, Rosales-Mayor E, Amara-Elori I, Reyes S et al. Factors Associated with Hospitalization in Bronchiectasis Exacerbations: A One-Year Follow-Up Study. Respiratory Research. 2017 Sep; 18(1): 176. doi: 10.118
- [18] 6/s12931-017-0659-x.
 Mahroofa E, Anandan PT, Akkara PV. Risk Factors
 Affecting Exacerbation of Bronchiectasis Leading to
 Hospitalization in Patients Attending a Tertiary Care
 Setting. International Journal of Medical Research

- Review. 2021; 9(6): 379-87.
- [19] Aksamit TR, Lapinel NC, Choate R, Feliciano J, Winthrop KL, Schmid A et al. Bronchiectasis and NTM Research Registry Investigators. Association Between Bronchiectasis Exacerbations and Longitudinal Changes in FEV1 in Patients from the US Bronchiectasis and NTM Research Registry. Respiratory Medicine. 2024 Jul; 228: 107660. doi: 10.1016/j.rmed.2024.107660.
- [20] Singh P, Katoch CD, Vardhan V, Chopra M, Singh S, Ahuja N. Functional Impairment in Bronchiectasis: Spirometry Parameters Versus St. George's Respiratory Questionnaire Scores: Any Co-Relation? Lung India. 2021 Nov; 38(6): 545-51. doi: 10.4103 /lungindia.lungindia_707_20.
- [21] Martinez-Garcia MA, Athanazio RA, Girón R, Máiz-Carro L, de la Rosa D, Olveira C et al. Predicting High Risk of Exacerbations in Bronchiectasis: The E-FACED Score. International Journal of Chronic Obstructive Pulmonary Disease. 2017 Jan: 275-84. doi:10.2147/COPD.S121943.
- [22] Martínez-García MÁ, Faner R, Oscullo G, la Rosa-Carrillo D, Soler-Cataluña JJ, Ballester M et al. Chronic Bronchial Infection Is Associated with More Rapid Lung Function Decline in Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society. 2022 Nov; 19(11): 1842-7. doi: 10.1513/Annals ATS.202108-9740C.
- [23] Bouzek DC, Ren CL, Thompson M, Slaven JE, Sanders DB. Evaluating FEV1 Decline in Diagnosis and Management of Pulmonary Exacerbations in Children with Cystic Fibrosis. Pediatric Pulmonology. 2022 Jul; 57(7): 1709-16. doi: 10.1002/ppul.25925.